# Number Spiral CSES Solution

A number spiral is an infinite grid whose upper-left square has the number 1. Here are the first five layers of the spiral:
Your task is to find out the number in row y and column x.

Input

The first input line contains an integer tt: the number of tests.

After this, there are tt lines, each containing integers y and x.

Output

For each test, print the number in row y and column x.

Constraints

• 1≤t≤1051≤t≤105
• 1≤y,x≤1091≤y,x≤109

Example

Input:
`32 31 14 2`

Output:
`8115`

Code Solution

```//Number Spiral CSES Solution

// Java program to find minimum moves required
// to make the array in increasing order
import java.util.*;
import java.lang.*;
import java.io.*;

public class SpiralNumber{

StringTokenizer st;

{
}

String next()
{
while (st == null || !st.hasMoreElements()) {
try {
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}

int nextInt() { return Integer.parseInt(next()); }

long nextLong() { return Long.parseLong(next()); }

double nextDouble()
{
return Double.parseDouble(next());
}

String nextLine()
{
String str = "";
try {
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]){
long t=sc.nextInt();
while(t--!=0){
long x=sc.nextInt();
long y=sc.nextInt();
if (x < y)
{
if (y % 2 == 1)
{
long r = y * y;
System.out.println(r-x+1);
}
else
{
long r = (y - 1) * (y - 1) + 1;
System.out.println(r+x-1);
}
}
else
{
if (x % 2 == 0)
{
long r = x * x;
System.out.println(r-y+1);
}
else
{
long r = (x - 1) * (x - 1) + 1;
System.out.println(r+y-1);
}
}
}

}
}

//Number Spiral CSES Solution```